The Authenticated Network Architecture

Sean Convery
Chief Technology Officer
Identity Engines, Inc.
The Authenticated Network Architecture

Contents

About the Author: Sean Convery, CTO, Identity Engines, Inc. 3

Part One: Introduction, Background and Marketing Dynamics 4

1 | Introduction 4
2 | Caveats 4
3 | Evolution of Network Security 4
4 | Today’s Threat and Regulatory Reality 7

Part Two: Best Practices and Considerations 8

5 | The Industry’s Product Response 8
6 | Evolved Designs, Not New Products 9
7 | ANA Design Fundamentals 12
8 | ANA Organizational Considerations 16
9 | ANA Technical Considerations 17

Part Three: Deployment Phases 27

10 | ANA Topology and Rollout 27
11 | Summary 35

Appendix I | Legend of Symbols Used 36

Appendix II | About Identity Engines 36
The Authenticated Network Architecture

Network security has been evolving since its inception, sometimes slowly, sometimes in larger increments. As technology has shifted, best practices have slowly matured. What was a good idea two years ago is still likely a good idea today, with minor variations based on the evolving threats and business requirements. However, we are currently at an inflection point in the use of network-based security controls. Whereas previous designs focused almost exclusively on static policies, filter rules, and enforcement controls, a newer approach has emerged that promises much more dynamic options to address the increased mobility and diversity of today’s network users.

This approach, called the Authenticated Network Architecture (ANA), is based on the notion of authentication of all users on a network and the association of each user with a particular set of network entitlements. For example, guests are granted access only to the Internet, contractors only to discrete network resources, employees only to the broader network as a whole, and privileged employees only to isolated enclaves of highly secured resources. Most of the capabilities described in the architecture have been available in shipping network infrastructure for many years. However, while the architecture itself does not mandate much in the way of equipment migration, it does require organizations to think differently with regard to their overall security framework. The cooperation of security and network architects with their more operationally inclined counterparts in IT is critical to ensure that the designs contained in this document evolve with the growing capabilities of your infrastructure.

This document outlines the ANA approach as a whole and describes how to migrate existing enterprise security designs to this more dynamic approach. In particular, it discusses the best practices that are emerging in ANA as well as the specific business requirements that influence deployment decisions.

About the Author
Sean Convery, Chief Technology Officer, Identity Engines, Inc.

Best known as the author of Network Security Architectures and principle architect of the Cisco’s SAFE blueprint, Sean has been a trusted consultant to thousands of IT organizations throughout his career. Prior to Identity Engines, Sean worked for seven years at Cisco Systems, most recently in the Office of the Security CTO focused on new security technologies. Sean’s past research focuses have included Layer-2 security, the security of the border gateway protocol (BGP), and the emerging security issues of IP version 6. Now focused exclusively on network identity, Sean is actively researching methods to address the gap between user identity and network access controls. Sean is a board member of the OpenSEA Alliance, a non-profit organization that promotes the development and adoption of an open-source 802.1X supplicant for secure access to network and other computing resources.
Part One:
Introduction, Background and Marketing Dynamics

1 | Introduction

Network security, until recently, evolved as the silicon capabilities within security and network infrastructure grew. Following the original development of the perimeter firewall, a “cat-and-mouse” game ensued with the attackers generally one step ahead of the defensive capabilities of deployed network enforcement devices. Security devices began first as specific software products, later became appliances, and finally were embedded in the network infrastructure. Today, firewall, intrusion detection, and VPN (all mainstays of early 21st century network security) can all be found embedded within a router, Ethernet switch, or other network device. Advances in silicon now allow network administrators and security professionals to look deep inside a packet to determine its threat profile.

When integrated into an overall security design, these powerful capabilities can reduce an organization’s risk. However, the emergence of mobility paired with a diversity of endpoint devices that allow network access have created an environment where simply looking deep into a packet is no longer sufficient. Organizations are increasingly looking to define specific rights not just for their own users but for guests and other short-term users who require network access. Much like an orchestra without sheet music or a conductor, today’s network security deployments often involve little to no coordination of policies across the individual elements that make up the network. The new ANA approach secures the network without relying on the creation of new instruments for the orchestra. Instead, it gives the existing instruments the coordination required to execute on the composer’s vision.

The so-called confidentiality, integrity, availability (CIA) model forms the foundation of information security, and this paper does not challenge that model. Rather, it describes the role that user identity plays in establishing a secure network. Identity is required in order to understand parties for which information should be confidential. Similarly, integrity is impossible without understanding who is authorized to change any information.

At its core, ANA introduces a single new element to existing security designs: the authentication and authorization of all network users, regardless of their method of connection.

2 | Caveats

Because this document discusses both basic design principles and specific technical considerations, it assumes the reader has a basic background in both network security and IP networking. Although portions of this paper can be beneficial to all levels within an organization’s IT staff, its content is intended primarily for the network and security architect. Directors and CxOs are encouraged to explore the document with the assumption that certain technical specifics will be too detailed. Two recent articles in Cisco’s Internet Protocol Journal (IPJ) cover many of the foundations of Authentication, Authorization, and Accounting (AAA). These topics, with few exceptions, are not repeated in this paper.

3 | Evolution of Network Security

It is helpful when examining ANA to understand the evolution of network security and the impact that evolution has had on current product offerings and design approaches. Understanding this evolution is important, because the early architects of information security did not foresee (much less design for) the current state of enterprise network security. As threats evolved, the IT response also evolved. As such, the approach an organization might have taken if confronted overnight with today’s entire security requirements landscape might have been very different from the response that evolved organically. This section shows a representative enterprise network topology and its evolution in response to new security requirements.

In the beginnings of enterprise network security, circa the early 1990s, requirements were minimal. If an organization had more than one site, the sites were connected over a WAN. Internet connectivity was almost nonexistent. As Internet connections became more common, so did the installation of perimeter firewalls. These firewalls operated on a simple premise: devices on the inside are trusted, but devices on the outside are not. The firewall, appropriately enough, allowed almost all communications from the inside to the outside, and almost no communications from the outside to the inside. Figure 3-1 shows an example of these early network topologies.
The early rise of the Internet created financial incentives for multisite organizations to migrate their WAN and remote-access connectivity over to a VPN. Site-to-site connections were created statically, and remote users accessed the network through VPN concentrators that often authenticated the user against a user store located on the concentrator itself. Figure 3-2 shows the previous topology with the addition of site-to-site VPN connections as well as remote-access VPN connections.

Setting aside dial-up connectivity, this stage of the evolution of networking represents the first point when user authentication became a required component of network connectivity. In roughly the same time frame, the explosion of enterprise VPN connectivity spurred the desire for business partners to communicate using VPNs as well. This connectivity sometimes took the form of a dedicated site-to-site connection, but also was implemented using remote-access connectivity. The latter was almost identical to remote-access VPN, with the exception that the policies and access requirements of the business partner were often much more narrowly drawn. Because of the inflexibility of most early VPN deployments, many organizations chose to deploy dedicated VPN infrastructures for business partners, separate from the VPNs used by employees. Whether for employees or business partners, all these forms of VPN connections performed simple user authentication rather than providing users with specific access to the resources that they were authorized to use.

This wide range of types of network users, combined with the increased use of the Internet by all facets of the organization, led to decreased trust of the internal network for the first time. In response, IT teams began to deploy intrusion detection systems (IDSs) behind the perimeter access-control technology to further inspect traffic as it entered the organization’s network, and they began to deploy it deeper in the internal network to inspect traffic between different zones of the infrastructure.

The next major evolution in network infrastructure was the deployment of wireless LAN (WLAN) technology. Early security challenges in the deployment of wireless led to the development of numerous protocols and standards designed to increase the security of the wireless network by providing confidentiality and integrity to the communications sent over the air. All of these approaches have, as their foundation, identification of the device or user prior to the granting of network access. An additional identity store was required, however, in order to authenticate these wireless users. Although it was technically feasible for the VPN and wireless infrastructure to share the same identity store, in practice these systems were often separate authentication systems. Just like remote-access VPN, these early wireless deployments had no policy component beyond the basic authentication of the connecting user. Figure 3-3 shows an example of a network at this stage of evolution.

During this network evolution the applications running on the network became more diverse as well. As the number of applications in large enterprises began to number in the thousands, centralized security approaches began to emerge. These so-called application identity-management systems principally offered web-based portals for simplified
access to numerous applications systems while providing consistent policy based on user rights. These portals authenticated users against backend directory stores, often using the Lightweight Directory Access Protocol (LDAP). These directory stores often housed the same users that were stored separately in the various network credential stores.

This situation left organizations with up to four different locations where identity information was stored—and each of these locations could have multiple iterations. For example, mergers or organizational friction could create multiple instances of application-identity user repositories. The complex, ad hoc nature of the network security layer increased further, however, as a broader community of users again required local access to the network. These new users included guests (such as visitors, vendors, and trainees) as well as a whole range of temporary contractors who needed access to specific systems. For these new users, a binary access-control decision (where the user is either provided full access to the network or none at all) was clearly unacceptable. Instead, granular authorizations were required to ensure that a guest could reach only the Internet, a contractor would have access only to portions of the internal network, and an employee would have full access. Because of the variety of devices on the network that perform some type of access-control enforcement, maintaining consistency among these systems became very challenging. Figure 3-4 shows an example topology fully evolved with indicators showcasing locations that require knowledge of user access policy.

This ad hoc approach to network security was architecturally suspect from the start, because maintaining consistency among the various policies is difficult. As more and more organizations faced these problems, it became clear that what was needed was an approach that allowed for distributed policy enforcement while maintaining central policy decision and authoring. In fact, the problem of ad hoc network security can be divided into two challenges: that of multiple, varied user stores and that of multiple, varied enforcement points. Having multiple user stores that contain duplicate accounts for the same individual creates significant consistency challenges. Therefore the first challenge, and the easier of the two to overcome, should be addressed by centralizing the user accounts into a smaller number of user repositories. For many organizations, all accounts can be collected into a single user store. For other, more complex organizations, dealing with multiple stores may be inevitable, but the use of virtual directories or meta-directories can reduce the complexity somewhat. The ANA approach addresses this first challenge by taking advantage of an organization’s existing user directories to provide a network-relevant view of all users.

The second challenge—that of multiple enforcement points—can be addressed more incrementally by establishing a central policy decision service and gradually connecting it to enforcement devices. Certain types of enforcement devices are more easily controlled by a central policy decision service. These devices include firewalls, Ethernet switches, wireless access points, and VPN gateways. Many other devices, including intrusion prevention systems and other, more specialized security devices, are not yet capable of receiving central policy decisions, though conceptually there is nothing preventing them from doing so. Figure 3-5 shows the centralization of both identity and policy information in a single location.

The figure shows that it is principally the variety of enforcement devices that was not foreseen in original secure network designs. Thus it was quite logical at the time to couple policy decision with policy enforcement. However, as the number of enforcement devices increases, this solution quickly becomes untenable. This is further exacerbated by the coming trend towards virtualization. With virtualized endpoint and data-center resources the PCs and servers themselves become part of the network as virtual switches become a part of these platforms.
4 | Today’s Threat and Regulatory Reality

Because there is no shortage of literature in the information-security space designed to scare us, this section of the document is brief. Rather than focusing on specific threats that have emerged in recent years or the latest breaches that have made the headlines, this section addresses the macro trends and how they affect organizations’ options in information security. The trends relate to mobility, contractors and guests, and regulations.

4.1 | Mobility

Mobility is perhaps the easiest trend to understand, because we likely see its effects in our own daily use of information technology resources. We have more connectivity options when accessing both the Internet and our own organization’s network, and we are taking advantage of such access using myriad devices. Some of the devices we attach to the network are owned by our organization, whereas others are personal devices such as mobile phones and personal digital assistants (PDAs) that we have
brought from home. Because of this increased access to the Internet, we are using the Internet more and more for conducting the business of our lives. Increased reliance on the Internet means that nearly everyone expects connectivity regardless of their location. This situation has led to the creation of the now-clichéd term in the security industry: deperimeterization.

Increased mobility also means that IP addresses have become less useful as a means of identifying users. IP addresses were originally meant for routing, but along the way they became a security identifier as well. As we roam the network and connect using different devices, our IP address changes constantly. Traditional firewalls, which use IP addresses almost exclusively for rules, cannot make any intelligent identification of users without the additional authentication step that ANA brings. ANA limits the use of IP addresses as security identifiers whenever possible while still using existing security equipment and techniques.

4.2 | Contractors and Guests

Building on the mobility point discussed in the previous section, contractors and guests connecting to your network have the same expectations of connectivity that you have when connecting to theirs. As a result, the notion that all users on a LAN are equal is quite outmoded. It is no longer a question of where you are connected to the network but rather who you are and what rights you should be afforded based on your identity.

4.3 | Regulations

Whether it be Sarbanes-Oxley Act (SOX), Health Insurance Portability and Accountability Act (HIPAA), Gramm-Leach-Bliley Act (GLBA), Payment Card Industry Security Standards Council (PCI), Digital Millennium Copyright Act (DMCA), Communications Assistance for Law Enforcement Act (CALEA), or Federal Information Security Management Act (FISMA), chances are there is an acronym (or more) that spells out security guidelines and restrictions you must impose on your organization and your network. The most common requirement in these regulations that relates to ANA is auditable network access. Some auditors interpret many of these regulations as mandating authenticated networks so that access can be traced based on time of day, user, and, in some cases, network destination. The intention of this paper is not to lay out a specific path to compliance for any of these specific security standards. However, it is highly likely that you can address some of the regulations affecting your organization through some of the best practices outlined herein.

Part Two:
Best Practices and Considerations

5 | The Industry’s Product Response

Like any other aspect of networking, network security falls prey to the cult of the new as much as any other segment. Trade publications, vendor pitches, and the analyst community all share the blame for encouraging the notion that you can find the solution to your secure networking problem by deploying a new product (or products). End users themselves are also somewhat culpable, because playing with a new “toy” is generally thought to be more fun than fixing the old one.

As the trends outlined in the previous section emerged, numerous new product offerings and solution categories were proffered as solutions. None of these components is fundamentally flawed, and all of them can be a part of an overall network security system. But, like the tools that preceded them, they are merely an element in the overall approach to secure networking rather than the sole means to achieving it.

Secure Socket Layer (SSL) VPNs, for example, are great at providing client-to-gateway confidentiality and authentication, but this hub-and-spoke security model has its greatest utility in remote-access VPN connections rather than as a replacement for LAN security techniques. The reason is that no matter how centralized data centers become in the future, peer-to-peer communications is an intrinsic part of IP networking, and SSL VPNs offer no solution for such communication. Therefore, if SSL VPNs are to live side by side with other methods of connectivity, it is important that any authorization policy be applicable across all access methods.

Intrusion prevention systems (IPSs) have also been presented as a foundation for solving today’s secure networking problems. Although the intelligence and performance characteristics of IPS systems have improved, most organizations still deploy them in a
passive-only mode because they fear that false-positive matches will block legitimate traffic. Increased use of encryption also poses a challenge. More and more applications encrypt the data they send, making payload inspection with an IPS impossible. SSL offload can address this encryption problem to a degree, but SSL offload is not practical everywhere, nor is SSL/Transport Layer Security (TLS) the only form of cryptography deployed.

There are also those in the industry who, upon seeing the challenges in network security, suggest treating the network as a whole like the Wild West and relying instead on endpoint security as the only solution. This scenario breaks the defense-in-depth approach that is widely accepted in the industry as a best practice. It creates a single point of failure, where the compromise of an endpoint security system could lead to the total compromise of the assets it is trying to protect. There is no doubt that the improvements made in operating system security and secure application development practices have yielded benefits to the industry as a whole and to organizations’ security. But to suggest that because of these improvements other, functioning forms of information security should be abandoned makes little sense.

Another approach, tied closely to the increasing role of endpoint security, is network access control (NAC). Conceived originally to address the worm propagation problems from the early part of the 2000s, NAC provides the means for a network to validate that a given endpoint device is running appropriate security software. This approach is often called posture checking. This device-centric approach adds value to a network, but if deployed without regard to the user behind the device, it winds up merely duplicating the update facilities already present in many of these offerings of endpoint software solutions. Posture checking is discussed further in Section 9.5. NAC was a good start and got the industry heading in the right direction; ANA is its logical evolution.

6 | Evolved Designs, Not New Products

As evidenced in the preceding section, there is no panacea for the challenges in network security. Instead, the approach to secure network design must be updated to account for the reality of today’s computing environments and the multitude of security devices that are present throughout the network.
This approach has numerous downsides. First, not every device is capable of sitting behind the data center or of building an SSL VPN connection to the center if needed. Printers and video conferencing devices, for example, must live among the user population in order to be useful. This setup creates a two-tier access model where most communications are to the data center directly over SSL but some are in the clear. Worse, the machines and the network as a whole are open to attack by anyone who connects. Denial-of-service (DoS) attacks do not require special access to the data center to render systems inaccessible. Client PCs can also be attacked prior to connecting to the VPN or, in the case of split tunneling, from all non-data-center systems throughout the duration of the client’s connection to the network.

Second, there is no ability to troubleshoot network traffic when all of it is encrypted. Using a sniffer is a mainstay of network troubleshooting, and if all your wires are painted black, there is not much you can do with a sniffer. Also, there is an implicit assumption in this design that cryptography is the most important thing you can do to protect information. However, a system can be compromised over an encrypted link just as easily as over a cleartext link. The only difference is that the systems along the path of network traffic have no ability to see it occurring. The SSL VPN design forces security to the edges of the network, where end-user PCs are protected only by the endpoint security software installed on them, and where server resources are protected only by the security infrastructure deployed in the data center.

Third, as was mentioned in Section 5, peer-to-peer communications are increasingly popular, particularly voice applications. With SSL VPN, either those communications are not secured in any way (as with split tunneling), or all peer-to-peer communications are sent through the data-center VPN gateways, creating a brittle hub-and-spoke topology even for local traffic. Finally, most organizations have invested considerable capital and manpower in their current network. That network has a breadth of capability that SSL VPN renders irrelevant.

6.2 | Overlay Approach

Although the SSL VPN approach is simple, the previous section outlines its substantial limitations as a design approach for securing an entire organization’s network. Newer network devices, built originally for the NAC market, suggest a different approach. These devices sit inline and act as LAN security appliances, in much the same way that traditional perimeter firewalls behaved. These devices typically offer access control and packet inspection similar to an IDS, along with the ability to identify the endpoint device. Sometimes they offer access-layer Ethernet switching and can replace your existing wiring closet switch. Figure 6-2 showcases this design approach.

The main benefit of this overlay approach is also one of its main detractions. Like the SSL VPN design, there is no need to rely on your existing network equipment to do anything security-related. All security decisions can be left to these new inline gateways. The downside, of course, is that you need to buy these new gateways for all your points of network access, and for locations like remote-access you are often replicating functionality that you already have in your VPN gateways. Additionally, you are placing new inline devices directly into the flow of LAN traffic on, presumably, a high-speed network infrastructure. This scenario can cause bottlenecks for the LAN traffic and also complicate trouble-
shooting, given that, when something goes wrong, you now must consider more devices.

6.3 | Embedded Approach

The embedded approach to security takes advantage of the evolution of network infrastructure over the last several years. Ever since large network equipment vendors entered the security game, we have seen an evolution in how network security capabilities are delivered. First packaged as special-purpose software on a generic PC platform, they were later delivered as hardened, dedicated appliances, and more recently they have become embedded within the routers, switches, and network hardware deployed throughout an organization’s network.

With the embedded approach, users and devices can be authenticated at the edge of the security-capable network infrastructure using techniques such as 802.1X, IP Security (IPsec), or Web-Auth. When authenticated, they can be provisioned with specific rights to the rest of the infrastructure. These rights can be enforced in the access device, at a network perimeter choke point, or at the egress of the network, depending on the design requirements. Figure 6-3 illustrates this approach.

This approach offers many advantages. First, it employs almost all of your network devices to enforce network security, as opposed to relying on a few, specific security gateways. This scenario keeps your network security requirements and the requirements of the rest of the network infrastructure more harmonious: security is now a part of the network rather than an add-on.

Second, without the need for dedicated gateways, the advanced network services deployed today—such as IP telephony and advanced quality of service (QoS)—are unaffected. In contrast, a security architecture that employs security appliances may hamper the operation of these sophisticated services.

Third, because these security capabilities are present in your existing network gear, adopting an embedded approach can result in substantial capital and operational cost savings compared with costs of an approach that deploys a separate security infrastructure.

The disadvantages of the embedded approach center primarily on the complexity of coordinating all the elements of the network infrastructure. For example, although VLANs may be a perfectly suitable segmentation technique for LANs, they are completely useless for remote users. For these remote users, IP access control lists (ACLs) must be used instead. To keep access rights consistent for a user connecting via both access methods, coordination of the policies requires a sophisticated central policy server designed for heterogeneous network support.

The requirement to coordinate a heterogeneous set of network gear represents another limitation of the embedded approach. Even the most loyal adherents of a particular vendor’s network equipment have variations in software load and model of device on their networks. Beyond that, most customers have many vendors involved, even if, in some cases, the involvement is evident only upon close inspection of the list of vendors involved in their complete data-center, distribution, wiring closet, wired, wireless, VPN, and firewall infrastructure. The orchestration of policy across this disparate infrastructure is one of the key advantages of the embedded approach, but the complexity can be daunting without a phased approach.

A further limitation is the sophistication (or lack thereof) of the security inspection capabilities present in the network infrastructure devices that will enforce security policy. Though these devices can perform security functions, they often do so in a more limited way than a purpose-built security appliance might.

Table 6-1 summarizes the pros and cons of each of these approaches.

6.4 | Hybrid Approach

Of course the problem of finding a next-generation, secure network architecture has no one right answer. It is possible to view nearly all of the drawbacks of each architectural approach listed in Table 6-1 as an advantage when viewed in the right deployment scenario. SSL VPN makes a fantastic remote-access technology. The embedded approach is the natural way to protect 802.1X-enabled endpoints on wired and wireless networks. The overlay approach provides the inline capabilities that are often needed when dealing with unmanaged, potentially vulnerable end-user systems. The ANA approach lets each of these high-level strategies play to its strengths by using a mix of approaches in a single network. With the right identity and policy layer employed in
the architecture, the mixed—or hybrid—approach not only becomes possible, but actually becomes the preferred solution. The reason is that different access methods have different strengths and weaknesses, and each requires a unique set of security techniques to deal with its unique threat profile. The hybrid approach is the focus of the remainder of this paper. Let the trade publications incite debate over the one “true” approach. The real world is messy, and the hybrid approach not only embraces the clutter but shines in its presence.

7 | ANA Design Fundamentals

This section explains the set of underlying design principles on which ANA bases all of its designs. It establishes a baseline set of goals that explain the specific design decisions illustrated later in this paper. An understanding of the core elements of the ANA approach detailed here can help you more easily grasp the reasons behind specific topology choices and technology considerations.

7.1 | Centralized Policy Decision Making and Audit

Performing role-based access control (RBAC) and auditing access events both become more manageable if all access-granting devices rely on a single access policy, meaning that all network devices that identify connecting computers and users go to the same location to obtain policy decisions. In a network without a single policy authority, it is difficult to restrict access to specific resources. For example, if your organization wants to grant financial database access to privileged employees only, how can you achieve that policy if you need to manage discrete policies within each of your enforcement devices?

Most networks today lack a central policy authority. The representative network topology described in Section 3 (shown in Figure 3-4 with the types of devices used in today’s networks) is typical. In the figure, the label “P” designates devices that have traditionally housed policy information. In some cases this policy is user-specific (at the group or role level) and in other cases the policy applies to a user or device based on the IP address of the connecting device.

Adopting the ANA approach to security brings manageability to your network access policies and makes it much easier to restrict access to specific resources. As discussed earlier, the goal of ANA is not the wholesale replacement of the existing topology (further complicating the design) but rather the achievement of some normalcy in the infrastructure you currently have deployed. As shown in the text that follows, you can achieve some degree of normalcy by implementing a centralized authority for policy decision making and auditing.

There will always be device-specific policy that it makes sense to manage on the enforcement device directly, but it is quite possible to centralize the two main tasks involved in controlling network access: authentication (the identification of the user or de-
vice) and authorization (the determination of that user’s permissions based on the attributes of the user’s connection). After the central policy authority has authenticated and authorized the user or device, it can communicate those permissions to the enforcement device. In some cases all you need to do is simply trigger a preexisting security profile on an enforcement device, and in other cases you have to send the specific permissions down to the device dynamically. This latter approach becomes particularly useful in cases where a combination of roles is possible.

For the remainder of the paper, it is useful to have a taxonomy to reference the specific locations and components in the design. Figure 7-1 shows the conceptual components of ANA using industry-standard designations for each component.

As mentioned earlier, if you are new to the basic concepts of AAA, you should read the AAA primer in the Internet Protocol Journal at www.idengines.com/downloads/IDE_Network_AAA.pdf. Figure 7-1 is very similar to a figure used in that paper. Following is the description of each component from page (3) of IPJ volume 10 number 1:

Client (Supplicant) - The client (sometimes called the supplicant) is the device attempting to access the network. The client either authenticates itself as a device or the device acts as a proxy to authenticate the user.

Policy Enforcement Point (Authenticator) - The policy enforcement point (PEP) is sometimes called the authenticator or network access server (NAS). The PEP is the network device that brokers the access request for the client. The PEP may be a dial-in server, VPN concentrator, firewall, gateway GPRS support node, Ethernet switch, wireless access point (AP), or an inline security gateway. The PEP is responsible for enforcing the terms of a client’s access. This enforcement varies based on the capabilities of the device and is discussed later in this article.

Policy Information Point - The policy information point (PIP) is a repository of information to help make the access decision. It could be a database of device IDs, a user directory such as LDAP, a one-time password (OTP) token server, or any other system which houses data relevant to a device or user access request.

Policy Decision Point (AAA Server) - The Policy Decision Point (PDP) is the brain of the AAA decision. It collects the access request from the client via the PEP. It also queries any relevant PIPs to gather the information it needs to make the access decision. The PDP, as its name implies, is the entity that makes the final decision around network access. It also can send specific authorizations back to the PEP that apply settings or constraints to the client’s network traffic.

Accounting / Reporting System - Whether on a dedicated system or built as part of a PDP, tracking use of the network via AAA is one of AAA’s best features. With all forms of network access now offering controlled access, the AAA service can tell you who got on the network, from where, and to what they were granted access.

7.2 | Authentication Everywhere with Authorization

The best centralized PDP cannot help very much if you are using it only with your remote-access infrastructure. The value of the PDP in the ANA design is that it provides policy services for every type of ingress to your network, and all devices and users that connect are authenticated. This is not to say that ANA is all or nothing; the later sections of this paper specifically deal with phasing your rollout of ANA to ensure your network stays manageable and your IT support staff encounter minimal problems as the transition occurs.

Like the need for authentication everywhere, if all you are doing at the PDP is checking to see that a user’s password is valid, then you have not added much value. In fact, you probably just have another point of failure in your architecture that you...
may not have previously had. The value of the PDP lies in its ability to make sophisticated policy decisions based on the identity of the connecting entity. Authorization does not need to be complex in order to be sophisticated. Some examples of PDP authorization policies include, for example:

- **Guests** can connect via any of the network switches or access points, but upon authentication they have access only to the Internet via a small number of allowed applications, and those applications are bandwidth-limited.

- **Contractors** must connect through the VPN portal in order to access any internal resources, and their access is specific to the project they are working on and valid only for the duration of that project.

- **Outside technical support engineers** can be granted temporary access to troubleshoot an internal routing problem, but can connect only via the VPN and can use the Secure Shell (SSH) Protocol only to the IP address of the one affected router.

- **Students** in classrooms where the instructor has decided Internet access is not allowed cannot authenticate to the campus network from the lecture hall during class time.

As you can see, these policies are the common-sense sorts of policies that you may have intuitively wished to deploy on your network but to date have been unable to implement. ANA provides the roadmap to build the infrastructure that supports these kinds of policies and much more.

7.3 Start Small on User Roles

Organization architects that appreciate the capabilities that ANA provides often adopt a design that has many user roles. Larger organizations might have hundreds or thousands of groups in their user directory, and the natural conclusion is to define a network-access profile for each group. This approach, however, is very problematic, primarily because of the complexity involved in managing the large number of roles. In addition, the goal of ANA is not to supplant the application security infrastructure you have already built but rather to augment it. Instead of defining hundreds of roles for the network, a smaller number—likely much fewer than a dozen—can provide a huge boost in the sophistication of your network infrastructure, while remaining completely manageable.

If you think of your network now as essentially a network with one role (full access), then the rationale for adding more roles is to define the high-level separation of rights that provides the most significant security improvement at the most operationally insignificant cost. The roles most organizations should consider follow, beginning with the roles that should be created first. It is not important to deploy all the roles at once. Each additional role adds another layer of delineation to the existing definitions already deployed.

- **Standard access** – This role is the default role that every user and device is currently a part of, whether through explicit authentication or implicit network connectivity. As you roll out ANA, you will gradually assign each user to a more specific role, with the goal of minimizing the number of users and devices that are a part of the standard access role.

- **Guest access** – This role is the most significant role you can add, because it enables any sponsored visitor to connect to your network and gain authenticated access to the Internet at large. By providing easy-to-use guest access, you minimize occurrences of users trying to connect to your private internal network where they might have full access. Most individuals are just trying to get their work done, and if you give them an easy way to get to the Internet (and the network of their home location) everyone is better off. Section 10 details the specific design considerations and policy trade-offs of guest access.

- **Contractor access** – Adding this role means that you no longer have to grant every contractor full access to your network. You can send contractors through a contractor VPN portal where they have access only to the specific systems that they need to fulfill their contract. This setup gives your organization the option to treat contractors more like guests and less like employees. You can grant specific access for only the defined duration of the contract. This solution also facilitates remote vendor troubleshooting or technical support in which an external support engineer needs, for example, 30 minutes of access to one specific system on your network.

- **Privileged access** – When you introduce the privileged-access role, you curtail the rights of the standard-access role so that it no longer of-
fers access to areas of the network deemed extremely sensitive, such as HR, finance, and R&D areas. Only the users who require access to such resources are placed in the privileged-access role.

In summary, with only four roles, you can significantly reduce unauthorized access to sensitive data. In most organizations, approximately 50% of the user base is part of the standard-access role, 10% has guest access, 20% has contractor access, and 20% has privileged access. With these four roles in place, sensitive systems remain exposed to a mere 20% of the user community.

7.4 | Enforcement Based on PEP Capabilities

As discussed in Section 6, a hybrid approach to security enforcement yields numerous benefits with limited drawbacks. The design consideration in this section (building on the Section 6 overview) simply says that you enforce access control based on the capabilities of the enforcement point a user is connecting through. Thus with wireless and wired LAN access, a VLAN is sufficient (particularly with the recommended small set of roles). Each VLAN can have a defined ACL that controls its connectivity elsewhere in the network. With VPN access, because VLANs are not an option, IP pool assignment coupled with basic access control lists is needed. For guest access, you could use an inline security gateway to provide tight restrictions on allowed traffic types.

7.5 | Endpoint/Network Interaction Is Important but Not Sufficient

Much was made at the inception of the NAC buzzword about providing controls in the network that could account for the capabilities and configuration of a given endpoint. The idea was that, when users connected, their system would be actively interrogated for antivirus signatures, patch levels, firewall configuration, and so on. The desire for this capability was a hasty reaction to the viruses and worms that hit between 2000 and 2003. Although this capability is useful, most managed systems in an organization already have mechanisms to manage the configuration and security profile of endpoints without involving the network. The unmanaged systems that really need the help do not have these same controls, and any network-initiated scan of these systems is unlikely to yield enough information to make an accurate access decision.

The basic principle of ANA in this area (and it will certainly vary based on the specific security policies of an organization and its industry) is that the network should validate that the endpoint complies with a security policy through basic checks, prior to granting access to the standard access or privileged-access role. Access to the privileged role may entail additional endpoint checks because of the sensitivity of the access. Access to the guest or contractor role should not include endpoint checks but should rather entail rigorous inline inspection of network use to ensure compliance with the acceptable use policy for these roles.

7.6 | Assume No Greenfields; Build with What You Have

The single critical failing of nearly every “new” security architecture is its insistence on a radical change to the network equipment deployed. This “cult of the new” in information security goes back to the beginning of network security and has as its core belief that you can solve any problem with an additional layer of security infrastructure that is not currently deployed. It is easy to understand why this thinking arises; it makes for a very great technology demo and for good copy in the trade press. However, as anyone who has worked for any length of time managing a mid- to large-size network will tell you, nothing changes overnight. Any new security architecture needs to provide incremental benefits as it is rolled out.

Section 10 shows that it is possible to build ANA using the enforcement infrastructure you have deployed today. It is entirely possible that the largest organizations may have some gear that is so out-of-date that it cannot run the authentication process, but even in those cases portal- or VPN-based solutions can augment the security in those older locations. Flexibility is a core belief of the ANA approach, and it is in embracing an organization’s current network infrastructure that this belief becomes most tangible.

7.7 | Inventory and Topological Awareness

Many aspects of networking become easier when the infrastructure is aware of your assets and the layout of your network; ANA is no exception. Just as the accuracy of an intrusion detection system in-
creases with knowledge of where the key resources are and what software they are running, with ANA it is important to understand:

- The location of restricted access servers and normal servers
- The access-control options on the path between your users and the restricted access servers
- The percentage of your access infrastructure that is ANA-ready (i.e., capable of authenticating endpoints and enforcing their access at a coarse-grained level or at a more precise level)
- The profile (location and type) of each endpoint device that is located on premises but not in a data center and that operates without human intervention and cannot authenticate to the ANA network (i.e., printers, fax machines, video cameras, and so on)
- The location of the devices identified in the previous bullet that can authenticate to ANA using a device credential
- The location and type of end-user systems that are not 802.1X-capable

All the systems not accounted for in the preceding list should be 802.1X-capable endpoints. This understanding is important because we want to use the infrastructure you currently have and not force several pricey upgrades. Acquiring this information is not as difficult as it sounds. First, tools to help you retrieve this information are available, such as traditional asset-management systems or more network-focused endpoint profiling tools such as the products from Great Bay Software. Additionally, full awareness is not required for phase one of your ANA rollout. Device awareness grows in importance as your rollout advances, providing a path for the natural evolution of this information set. For example, rolling out guest access requires fairly little knowledge or integration with your existing systems, particularly if you are deploying guest access via wireless.

7.8 | Logging and Reporting Considerations

Security professionals tend, as a group, to be very fond of logging. They want everything logged and stored for audit purposes. They like log analysis tools that can comb through logs from various devices to search for trends. They even like logs from non-security devices because these devices can often provide interesting data to help piece together the history of an incident when one occurs.

What most of the network-focused log data has lacked is user awareness. Just like security in general, log data has focused on IP addresses and MAC addresses. However, for reasons that should be clear by this point, that is no longer a reasonable set of identifiers on which to base a security decision.

ANA requires, instead, the merging of traditional security logs with the log data generated by your PDP. This device can give you the binding of a user to a given IP or MAC address for a given period of time, allowing you to replace instances of device identifiers in your logs with user identifiers. If you need to track down users at a given point in time, the data is all there; you do not need to go through a convoluted process of tracing their access back through all the systems they interacted with.

8 | ANA Organizational Considerations

Many larger organizations have a significant degree of compartmentalization of the technical proficiency associated with security and identity. Although ANA places a much less onerous burden on your infrastructure in terms of migrations, it can demand a high degree of organizational cooperation among your teams. Smaller organizations can navigate these complexities easier than large ones, but for all organizations it helps to be aware of what is to come. For most organizations, the following groups play a role in the ANA rollout:

- **Directory Services Team** – Often associated with the application side of the organization, this team probably does not know much about the network. Any ANA rollout needs to interface with this key group because it controls the most authoritative source of identity information in your organization. With ANA, you do not want to replicate the directory services you already have deployed—you merely want to connect them to your PDP to provide all the necessary information needed to make your access decisions.

- **Network Services Team** – This group, along with the security group, includes the most likely readers of this ANA approach. Prior to 2004, network teams were much more likely to
have an acrimonious relationship with the security team than they have today. The merging of many security functions with core networking functions has created many more linkages between the two teams, and in many organizations has resulted in their merging.

- **Security Services Team** – The two most common approaches to security services are an operational approach or a policy approach. In the operational approach the security team sets policy and also manages firewalls, IDS, VPN, and other security-centric services. In the policy approach, it leaves the day-to-day management to the network group and instead focuses on defining standards and policies that all other IT groups must adhere to.

- **Endpoint Services Team** – This team is sometimes part of the application team, but we call it out here separately because there are some important considerations related to ANA. The biggest factor is the need for endpoints to authenticate to the ANA-enabled network. Authentication often requires client configuration changes or possibly new software to improve the security of the authenticated session or its manageability. The end-user help desk is a key component of this team.

The political and structural reality of each organization is different, but the basic requirements for buy-in are the same. When dealing with the directory services group, the important thing to remind the group is that, by rolling out ANA, their directory services become more relevant to a new area of the IT infrastructure. It is also important to point out that you do not need write access to the user information in the directory in order for ANA to work. ANA needs only the ability to make queries of the database of devices and users.

The interaction of the networking and security groups should be fairly straightforward: as mentioned earlier, the groups have been headed together over the last several years. If you are a network professional trying to get buy-in from a security group, it is important to explain that ANA reorients your policies to focus on user identity, thereby offering benefits in policy enforcement and audit. If you are a security professional trying to sell the networking group on the ANA approach, you should focus on the merging of access control with access-layer networking and the increasing importance this integration places on network devices. An ANA-enabled network is much more useful to a security professional and—when deployed—far more manageable for the networking staff because of the dynamic nature of network access.

You should engage the endpoint team in conversations early to discuss the specific requirements that will result in endpoint configuration changes or new client software. Technologies such as web authentication require nothing sophisticated on the endpoint, but more advanced technologies such as IPsec and 802.1X require some planning to ensure a successful rollout.

9 | ANA Technical Considerations

This section outlines some specific, high-level technical considerations introduced by the technologies ANA uses to deliver on its goals. It is not designed to supplant product documentation or detailed deployment guides for specific facets of the technology that you may find elsewhere. The focus is on providing the technical information necessary to architect the system as a whole, before you move into specific phases of testing. It is easy to get too excited by the options an ANA-enabled network provides, and in so doing the temptation is to activate every advanced feature at once, but the result would be a failed rollout. Instead, focus on your specific business and security requirements, and adopt the component that will yield the most benefit first. The following sections can help you make the technology decisions.

9.1 | IEEE 802.1X

Unlike in the early days of 802.1X in the marketplace, the technology is now ready for deployment in most usage scenarios. The key technical decisions with 802.1X are what Extensible Authentication Protocol (EAP) authentication type to select, what supplicant to use, what relationship 802.1X authentication will have to MAC authentication, how guest access will be provided, how other non-802.1X types of LAN access will be offered, and, finally, how daisy-chained IP phones will be deployed.

9.1.1 | EAP types

For an exhaustive discussion of the various EAP types, refer to the IPJ AAA article mentioned earlier. For all practical purposes, in today’s 802.1X networks you have two options: Protected EAP
Although there is more than one EAP type, the principal considerations are what types of credentials your users currently possess, and what EAP type requirements other aspects of your ANA rollout impose (supplicant choice, posture validation technology, etc.). For the time being, EAP-TTLS and PEAP are the two options to consider for any ANA rollout. Careful consideration of the topics covered in the next several sections can help your organization make the right choice.

9.1.2 | Supplicant

Your organization may support any of three classes of supplicant technology. In some cases you may wish to support more than one, provided the selected options behave predictably with your chosen EAP type.

- **Operating system native** – Most organizations use Windows, though Mac OS X and Linux are growing in popularity. The Windows built-in supplicant offers adequate 802.1X support for Windows XP SP2 and later and for Windows Vista. Computers running earlier versions of Windows probably should be considered non-802.1X devices because of the limitations in their 802.1X implementation. Mac OS X has had a reasonable 802.1X client since version 10.4. Although the Mac supplicant supports both of the recommended EAP types defined earlier, the Windows supplicant supports only PEAP. This fact alone is responsible for 95% of the decisions to roll out PEAP among 802.1X adopters. The diagnostic information available to both supplicants is fairly limited and may require troubleshooting at the PDP and PEP levels to get sufficient understanding of what is going on. Additionally, whereas the Mac supplicant is fairly intuitive to configure, the Windows supplicant is very difficult for the average user to set up and for many use cases requires registry-only configuration changes. For this reason, organizations choosing to roll out the Windows supplicant often use add-on management tools or AD group policy to ensure a smooth rollout.

- **Commercial add-ons** – Both Juniper and Cisco have acquired 802.1X supplicant technology in the last several years. These acquisitions are now the mainstay of each vendor’s 802.1X client strategy. Because networking vendors have a vested interest in the success of 802.1X, these commercial supplicants can be among the more mature and functional supplicants available to an organization. In both cases however, these supplicants have a per-seat cost. This cost, anywhere from $10 to $40 per seat, can be onerous to many organizations. Additionally, each networking vendor has its own proprietary NAC strategy that depends on its own supplicant technology. Coupled with the lack of standardization of EAP types, this situation means that you can count on each such supplicant working well with its own vendor’s equipment, but in heterogeneous rollouts you should test the supplicant’s interaction with other vendors’ equipment. The last consideration with the commercial supplicants is that, although they often support more than one operating system, the release dates of the non-Windows versions tend to lag behind the release dates of the Windows version by some length of time.

- **Open source** – Although there is more than one open-source 802.1X supplicant, the client with clear industry momentum is XSupplicant from the OpenSEA Alliance’s Open1X project. This supplicant was originally written for Linux and has since been ported to Windows XP and is actively moving to other operating systems. The client is now high quality and has been tested as interoperable with a wide variety of networking and security vendors. Because of the lack of standardization of EAP types and the heterogeneous reality of nearly every 802.1X rollout, having an open-source client on the desktop can be a real benefit from an interoperability perspective.

There is no one clear winner in terms of supplicant choice for a given organization. For organizations with relatively simple requirements for authenticating endpoints and an all-Windows workforce, using an operating system native supplicant coupled with configuration management is probably the best and most mature option. Organizations electing to deploy pro-
proprietary NAC technology from Juniper or Cisco will obviously be best served by the commercial supplicants, despite their cost. Everyone else should strongly consider the OpenSEA client, or a mix of OpenSEA and operating system native supplicants. You should test your specific use case in the lab of course, but the development resources and companies that are part of the OpenSEA Alliance make XSupplicant a natural choice for heterogeneous networks. Additionally, OpenSEA has embraced the Trusted Computing Group / Trusted Network Connect (TCG/TNC) NAC standards, which now encompass Microsoft Network Access Protection (NAP) as well. Having a free and interoperable client with a consistent design across operating systems is a powerful aid to any 802.1X rollout.

9.1.3 | Dealing with Guests and Other Non-802.1X-Capable Endpoints

Early deployments of 802.1X were all or nothing. If you did not authenticate successfully, you were not granted any access. This deployment scenario quickly imploded under the weight of its unrealistic assumptions around 802.1X adoption.

Today’s successful rollouts assume a mix of 802.1X and non-802.1X endpoints connecting to the wired and wireless LAN. For WLANs, the natural solution is to have two (or more) Service Set Identifiers (SSIDs), one Wi-Fi Protected Access (WPA) with 802.1X enabled and requiring a supplicant, and the other open and requiring authentication of the endpoint through an inline gateway. The two principal means of providing this support in a wired network are MAC authentication and guest VLANs.

• **MAC authentication** - Called MAC authentication bypass on Cisco gear, MAC authentication sends the MAC address of the connecting device to the PDP if the device fails to respond to the EAP-Request/Identity packet sent from the PEP. The MAC address can then be authenticated and identified by the PDP in whatever manner it sees fit. This decision could be a basic yes/no decision or a much more advanced policy decision where, for example, after the MAC address of the device identifies it as an IT-managed printer, the PDP instructs the PEP to place it on the printer VLAN. The trick with MAC authentication is generating the list of MAC addresses and defining the access rights, a process that can be very labor-intensive, though some products offer assistance.

• **Guest VLAN** – If the device does not respond to an 802.1X query and the MAC address is not authenticated by the PDP, the device is placed into a guest VLAN. You can configure this VLAN to route through a captive portal device where guests can authenticate using just a browser (no supplicant required) in order to gain access to the network. Captive portals work by redirecting a user’s Domain Name System (DNS), HTTP, and Dynamic Host Configuration Protocol (DHCP) requests to the portal itself. They are commonly used in hotel broadband connections. Captive portals can also provide custom landing pages that can provide users instructions or terms and conditions. These portals present a very effective tool for managing an 802.1X rollout and dealing with non-802.1X-capable systems.

Figure 9-1 shows an example topology where a mix of guest users, non-802.1X-capable users, and 802.1X endpoints are connecting to the same switch. The main consideration here is deciding on the locations at which you want to mandate 802.1X connectivity and the locations at which guests or non-802.1X clients are allowed. Based on the organization’s needs, you can enact simple policies or very complex ones. The easiest policy is to set all ports to use 802.1X authentication and also to support MAC authentication if 802.1X fails. You can configure the PDP to allow all devices to connect, but to provide Internet-only access by default and grant additional network access to only those devices that present known MAC addresses. This technique does not require the use of a specific “guest VLAN” feature on the switch because unknown MAC addresses are simply mapped to the VLAN with only Internet access.

Using MAC authentication without the Guest VLAN feature has two main advantages. First, MAC authentication always has an audit record, even when the MAC address is unknown to the PDP. Second, MAC authentication can periodically reauthenticate the endpoint and can use inactivity timers to prevent devices from staying on the network for long periods of time while no user is at the keyboard.

Another consideration of this approach is how to deal with a guest system that happens to be 802.1X-capable. In the default mode on many switches, a connecting client that attempts to use 802.1X and fails is placed in the “auth-fail” VLAN. The auth-fail VLAN can grant as much or as little
access as is needed to enforce the organization’s security policies. However, a good case can be made for having the auth-fail VLAN grant access to the Internet at large, because this policy can accommodate a guest whose laptop “speaks” 802.1X but who has no login credentials for the network. In this scenario, without the user’s knowledge, the network requests 802.1X authentication, the laptop complies automatically, sending its usual credentials, and the authentication fails because the guest’s credentials are unknown to the network. In such a case, it is typically better to grant Internet-only access than to provide no access at all.

You can create sophisticated rollouts that have the auth-fail and the guest VLANs as two different VLANs with two different portal landing pages. This setup enables the auth-fail VLAN to be somewhat more informative. It could, for example, say, “If you reached this page, 802.1X authentication has failed. If you are a registered user of this organization, click here to update your 802.1X configuration and receive additional troubleshooting steps. If you are a guest of this organization, click here to authenticate using the username and password that your sponsor provided.” The auth-fail VLAN portal, therefore, is more oriented to helping the registered user who failed authentication than is the guest VLAN, which simply asks guests for their guest credentials. You can easily achieve this setup with one portal and one VLAN, but this two-VLAN option provides the simplest user experience for the different types of users whose initial authentication attempts have failed.

9.1.4 | IP Telephony

The 802.1X standard assumes one device per port. The most popular IP telephony deployments chain the PC connection off the back of the phone to allow both devices to connect with just one switch port. Therein lies the problem. This issue manifests itself most acutely in the lack of link-state changes that the switch fails to see as devices connect behind the phone. Figure 9-2 showcases this challenge.

As the figure shows, when a PC connects to the phone port or disconnects from the phone port, the switch is unable to detect a link-state change. This situation is problematic because a link-state change is a critical event in the 802.1X state machine. Specifically, the link-state change causes the 802.1X process to reinitialize. Such installations are further complicated by the VLAN segmentation typically performed in an IP telephony deployment. Most IP phones are not 802.1X-capable or, if they are, installing device credentials on each phone is challenging from a management and operations perspective.

You can address this reality in numerous ways. First, your organization can use a dedicated port for...
PCs and phones. Though this solution is often not cost-effective, it is the simplest. Second, you can use 802.1X-capable phones; some of these devices support the PC authenticating behind the phone as well. Some switches support multiple MAC addresses per port (even with 802.1X), making this option a viable one. Third, consider MAC authentication of the phone, the PC, or both. And finally, Cisco IP phone products support Cisco Discovery Protocol-based authentication for the phone and 802.1X authentication for the PC behind the phone. Further details about deploying 802.1X with your IP telephony solution are beyond the scope of this paper and dependant on the model of your phones, switches, and call-management infrastructure.

9.2 | VPN

VPN remote-access deployments must undergo a minor evolution to conform to ANA, but no substantial change is required. Because VPNs are one of the earliest forms of authenticated network access, the goal when applying ANA to a VPN is simply to make the identity decision authorization-enabled. This technique ensures that rather than simply checking a password, the VPN can grant specific network rights based on the authentication event. These rights can be provided in several ways. The first is to mimic the VLAN functionality in switches to associate given user types with specific IP pools. These IP pools can then have specific access-control profiles configured on the VPN gateway or on an upstream security gateway. Second, a role identifier can be sent from the PDP to trigger a preexisting security profile on the VPN gateway. This identifier is typically something like the filter-ID RADIUS attribute that points a user to a specific access list that the VPN gateway has preconfigured. The third method of access is to provide the access control list from the PDP. Section 9.7 discusses this technique and its advantages and considerations.

The decision to use SSL vs. IPsec VPN is immaterial to the ANA approach. Often IPsec can provide more transparent network connectivity at the cost of more client configuration. SSL VPN is perfectly suitable for many organizations and is particularly advantageous in providing the contractor access discussed in Section 7.3 of this document, because it requires no client configuration for basic connectivity. More important than the SSL-vs.-IPsec debate is the degree of configuration that the VPN device can receive from the PDP. Unsophisticated VPN gateways can only ask the PDP for a yes/no decision on a given user, a situation that is problematic for ANA because one of the goals of the architecture is to provide consistent, RBAC regardless of access method.

9.3 | Inline Security Gateway

As is the case with VPN gateways, ANA offers a lot of flexibility with respect to the choice of an inline security gateway (such as an IPS, firewall, captive portal, etc.). The two core requirements of these systems for ANA follow:

- The gateway must support user authentication prior to allowing traffic to flow through the device.
- The gateway must support at least a limited authorization conversation with the PDP, such as the filter-ID RADIUS attribute mentioned in the VPN section.

With that capability as the minimum, there remains a lot of flexibility. A sophisticated next-generation security gateway may make perfect sense to police guest access to the Internet where endpoint security controls cannot be relied on. Often for cost reasons it makes more sense to deploy a single inline gateway of this sort close to the point of Internet access or connectivity to the internal network rather than using such systems at each point of access-layer guest access. This scenario allows simple portals (such as you might see in a hotel broadband connection) to provide the authentication services for the guests. The biggest capability that a portal would ideally provide is the ability to segment access after the authentication event through similar methods as discussed in Section 9.2. In this respect, the guest portal behaves much like a VPN gateway, but without the encryption.
Traditional firewalls are often best deployed in the ANA approach in front of key data-center assets that require an additional layer of security such as protecting access to the network segment that the “privileged-access” role has rights to. You can use next-generation security gateways here if needed to augment inadequacies on the endpoint security configuration of your organization’s assets or simply to provide another layer of defense.

IPS and IDS systems have been derided more and more in the industry because of their tuning issues and the false positives that result from the poor tuning. Traditional IPS/IDS systems have no options for authenticating users, because that is not their role in the security system. However, as discussed in Section 7.8, having network-wide authentication allows the alarms generated by an IDS to have identity information associated with each event, whereas before only an IP address or MAC address was provided. This correlation does nothing to address tuning considerations, but in cases where IDS is required, it makes the data generated by the system much more effective.

9.4 | Asset Correlation (Device and User)

As discussed in Section 7.8, the linking of a machine to a user is a powerful capability. This section discusses the technical considerations to consider while pursuing this goal.

The first consideration is that MAC addresses and IP addresses can be spoofed, meaning that relying on the binding provided by ANA for 100% of your security awareness is ill-advised. However, strong assurances can be provided through the deployment of RFC 2827 ingress filtering and anti-spoofing measures present in most modern access-layer devices. These measures include (using Cisco terminology) Address Resolution Protocol (ARP) inspection, DHCP inspection, port security, and Unicast Reverse Path Forwarding. Assuming reasonable anti-spoofing measures are in place, the correlated data for both the policy decision and the audit that results following the access request can be provided in numerous ways.

To aid in policy decision making, the access request generally includes the client MAC address (for example, with 802.1X). This data is often sent using the calling-station-ID RADIUS attribute, but may also be sent using a vendor-specific attribute (VSA), and allows the PDP to check that a given user is connecting to the network from an allowable endpoint. This data can be stored in a PIP and might define the assets associated with a given user. If an unauthorized user connects to the network using the MAC address belonging to another user, access can be denied. Another option is to use 802.1X machine authentication such as might be found in Windows Active Directory environments. This machine authentication is different from MAC authentication and involves the client PC performing 802.1X using only a device credential (Windows machine authentication occurs independent of anyone sitting at the keyboard). Advanced PDPs can remember that this machine authentication has occurred and require all 802.1X user access to come from PCs that have established current sessions using machine authentication. Although both of these options are subject to spoofing attacks, they can still provide substantial value as part of a broader ANA rollout.

The key ANA requirement that addresses audit requirements is RADIUS accounting. With RADIUS accounting enabled, the PEPs send start-and-stop messages when stations connect and then disconnect. This process allows the PDP to track the state of a given endpoint and is key to following users through the network as they connect and disconnect from different devices and access methods. Given the behavior of DHCP, it is quite likely that more than one device may share an IP address over the course of a given day, making accounting essential to support the ANA goal of providing logging repositories with identity awareness. Additionally, because 802.1X occurs at Layer 2, accounting is the only easy way to associate a given MAC address with an IP address without performing secondary correlation with DHCP logs.

9.5 | Posture (Endpoint Health)

As discussed in Section 5, posture checks were the raison d’etre for authenticated networks as the NAC market moved through its nascent stages. By “posture check,” we mean assessing the security and health of the connecting client, including checking for the presence and readiness of firewall, antivirus, anti-spyware, and anti-phishing software that the IT department deems necessary. This section discusses where posture checks make sense and where they are less useful. It also addresses emerging posture standards and how they may affect deployment.

From a location perspective, your managed endpoints are the primary location at which it makes
sense to deploy your posture-checking perimeter. It is here that posture can be accurately measured through endpoint client software so that policy decisions can be made. Guest systems, until posture standards become more ubiquitous, represent a variety of operating systems and software loads, meaning that they are very difficult to measure via posture checking, as described earlier. Contractor systems can be measured more easily than guest systems, but that is predicated on the ability to install endpoint software or mandate endpoint configuration changes (where standards are available) on the laptops that your contractors connect to your network.

The paradox your organization faces when considering deploying endpoint posture checking on its managed systems is that these systems are the systems least in need of any measurement because of their existing endpoint-management capabilities. For this reason alone, posture should not be the first step or primary goal of any ANA deployment. The focus should be on identifying the user and associating that user with a specific set of rights.

This situation will change as the industry adopts de facto or de jure standards. The three major initiatives follow:

- **Trusted Computing Group/Trusted Network Connect (TCG/TNC)** – This initiative has produced numerous standards and claims a broad set of membership in the industry. The standard struggled without Cisco’s or Microsoft’s participation until early 2007, when it was announced that the Microsoft Network Access Protection (NAP) core protocol is now a TNC standard. This announcement made broad interoperability between NAP and TNC possible, making these two approaches the default choice for organizations considering posture checks.

- **Microsoft Network Access Protection** – NAP has yet to ship as of this writing, but because of its interoperability with TNC and the broad set of partners Microsoft has attracted, NAP/TNC is a natural choice for performing posture checks. Because Microsoft is licensing its full NAP implementation to third parties, it is possible for other vendors to offer NAP capabilities to augment or replace the ones produced by Microsoft.

- **Cisco Network Admission Control** – Also known as the Cisco NAC Framework, the Cisco approach is completely proprietary and does not allow much interoperability beyond an announced relationship with Microsoft NAP. Cisco NAC has been plagued by deployment challenges, and Cisco has recently chosen to emphasize its NAC appliance rather than the 802.1X-based NAC framework. Until Cisco embraces standards and interoperable deployments, these deployment challenges will likely continue. The NAC appliance has had far more success in the market compared to their framework approach and further NAC developments from Cisco will likely seek to merge the two offerings.

The end goal of any standards effort with respect to posture checking is to ensure full interoperability in posture measurement so that a guest computer can connect to a network and—using an industry-standard language to describe its posture—provide a clean bill of health. With this approach the network administrator can deny access to any system that might pose a risk to the network or the systems behind it. Until such time as standards are adopted, guest systems can be interrogated through inline IPS-type devices, and managed end-user systems can be checked using client-side software that enforces rules built on posture standards such as the TNC.

9.6 | VLAN Challenges

VLANs offer the ability to segment a Layer 2 network by creating multiple networks within a given Ethernet switch. They were originally developed to limit the size of LAN segments, thus reducing broadcast traffic from interfering with network performance. Each VLAN is its own broadcast domain, so each VLAN requires its own IP subnet.

When deployed for security, VLANs are typically used to separate specific user groups from one another through ACLs deployed at the router interface separating the VLANs from each other. In the days of static IP addresses and desktop (rather than laptop) PCs, it was common to use VLANs to separate departments from one another and locate servers so that they could be accessed only from specific VLANs. The proliferation of wireless, DHCP, and mobile devices has made static VLAN assignments nearly useless for many organizations. The ANA architecture provides the ability to assign VLANs dynamically based on the identity of the connecting station. This assignment can work with 802.1X on wired or wireless, or with MAC authentication. For
security architects, this capability restores a powerful segmentation capability, but there are considerations around its use.

First, it is critical to understand that if you wish to create a VLAN for a specific role, you need that VLAN to exist everywhere users may connect from that role. Because almost all network cores are routed at Layer 3 today, an IP subnet is needed per VLAN and per broadcast domain. End-to-end VLANs with Layer 2 cores are not a safe option here either because of the numerous spanning-tree issues and broadcast problems. Figure 9-3 showcases this challenge.

When assigning VLANs, it is important to realize that unless you filter the traffic at each VLAN, there is really no useful security provided. The filtering can occur in one of two places, and in many cases both are appropriate. As shown in Figure 9-4, filtering can be done at the access-layer switch and at the access-control point in the data center (either a switch or dedicated security gateway).

Filtering at the access-layer device is very powerful because it stops unauthorized traffic very close to its point of origin. However, filtering at this point can require an exhaustive filter list even if your network is cleanly architected and segmented, because the standard security axiom of “expressly permit, implicitly deny” mandates that you build the ACL as a set of permit statements with a catch-all deny at the end. Section 9.8 discusses the repercussions of this reality in more detail.

An alternative approach that may be suitable, depending on your requirements, is to treat the access-layer filtering as focused on stopping the obviously bad traffic before it gets into the network proper. Anti-spoofing filtering can be done here, as well as denying access to certain types of network traffic that an organization might not allow. At the port level, the filtering efforts at the data center can focus on specifying which IP subnets are allowed to access which sets of servers. As discussed earlier, remember that you need to list each IP subnet that is part of a given role when writing this filter. Figure 9-5 shows an example of this filtering done at the data center and at the access layer.

Consideration of all these filtering and IP subnet requirements leads us to an important conclusion: VLANs have a multiplicative relationship with IP subnets in multisite networks and should be limited based on the capacity of an organization to manage the ensuing complexity. For most organizations, this limitation means no more than 5, and at most 10 roles.

Imagine a large enterprise with 20 sites, each site having three broadcast domains (floors, buildings, etc.), and 5 roles. This setup will require 300 IP subnets to route and classify the 5 roles (not accounting for any wireless or VPN infrastructure.)

To filter access to a server associated with a specific user role (role-specific server), the IP address of that server needs to be added to an ACL at 60 loca-
tions to accommodate all the locations the user role can connect from, or an access control list needs to be placed in front of the role-specific server with 60 entries describing the source IP subnets for all the role-specific, access-layer IP subnets.

For all these reasons, organizations should start small on roles, as discussed in Section 7.3. You can add a guest role without any of the ACL complexities discussed previously, and you can integrate the contractor role using dedicated VPN infrastructure—thus also circumventing the multiplicative ACL problem. You can deploy guest, contractor, and privileged-access roles in addition to the regular user role in a very manageable way, avoiding much of the complexities listed previously. You can add more roles, but be aware of the repercussions of this choice.

9.7 | Dynamic ACLs

Section 9.2 discussed how to trigger a preexisting ACL on a VPN gateway. You can accomplish this trigger on an Ethernet switch or WLAN access point. Most organizations choose instead to simply assign the VLAN and have the VLAN be pre-associated with a static ACL on the network device (PEP). This section discusses dynamic ACLs, or ACLs generated on the PDP and sent to the PEP. This approach has its own challenges but offers a much more scalable option for the number of supported roles. Figure 9-6 shows how to apply dynamic ACLs to a PEP based on the identity of the individual.

Here you can see that the ACL is built using the roles associated with the user and sent down to the PEP at authentication time. This technique has three distinct advantages over static ACLs or VLANs alone.

First, VLANs are no longer necessary for security compartmentalization. If the set of destinations that must be allowed results in an ACL of reasonable size, the ACL can enforce the rights at the edge without having to do further filtering in the data center. The only reason for using IP subnets for different roles is so that a packet can be identified elsewhere in the network. If instead you block and permit all the traffic at the edge, there is no need to set up subnets per role.

Second, dynamic ACLs are supported across all access methods. Unlike when dealing with IP pool assignment on a VPN device or VLAN assignment on a switch or access point, all access methods can have the same set of dynamically assigned network rights. Although this approach takes more work to set up properly (and should not be attempted in phase one of an ANA rollout), it represents a sound architectural approach to unified access control.

Third, dynamic ACLs can easily deal with the combinatorial roles that result from individuals with more complicated rights that cannot be modeled as one-to-one role mappings. A university, for example, might choose to restrict access to different departments based on a user’s affiliation with that college. However, if a given professor is tenured in both the math and physics departments, you would need to create an additional role/ACL to define the combined rights of these two departments. This situation can quickly become unmanageable because

<table>
<thead>
<tr>
<th>PDP Authorization Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math</td>
</tr>
<tr>
<td>Law</td>
</tr>
<tr>
<td>Business</td>
</tr>
<tr>
<td>Medicine</td>
</tr>
<tr>
<td>Physics</td>
</tr>
</tbody>
</table>

Figure 9-6: Dynamic ACLs
of the “n-squared” problem. Dynamic ACLs solve this problem by defining the rights of each role and simply combining them as needed. When setting up a policy that dynamically combines ACLs, you need to follow the “expressly permit, implicitly deny” model. This consideration is important, because sending a mixed set of deny statements and permit statements plays havoc with most PEPs. For example, one role might deny access to something that another role permits. If a user is a member of both roles, an access-control conflict will occur. Ensuring that the permissions of each role contain only permit statements addresses this problem, because a member of both roles should naturally get the combined set of permit statements from the two roles.

The dynamic ACL approach has several drawbacks. First, it is not commonly deployed because only recently have PDPs with the sophistication to handle this complexity reached a state of maturity that makes them viable deployment options. Second, not all PEPs support dynamic ACLs. Today, the most widely deployed equipment that supports dynamic ACLs is Cisco gear. Present in Cisco firewalls, VPN concentrators, and Ethernet switches, the “Cisco AV-Pair” (VSA 26/9/1) allows the passing of a single ACL entry from a RADIUS server to many Cisco devices. Each line of the ACL requires its own instance of the VSA, and sequence numbers within each VSA specify the order of the entry as in:

```
  ip:inacl#10=permit tcp any host 192.0.2.45 eq 80
  ip:inacl#22=deny ip any 172.16.0.0 0.0.255.255
  ip:inacl#37=permit ip any host 212.3.5.12
```

In this example the numbers 10, 22, and 37 specify the order in which the ACL should be built on the enforcement device, starting with the lowest number. There is no overall identifier for the ACL because it is applied to a specific port or IP address belonging to a given user. Often these dynamic ACLs can be viewed in their native form on the enforcement device via “show” commands (after they have been downloaded to the device).

Another drawback, as implied, is that the formatting of these ACLs varies from vendor to vendor. Recently published RFC 4849 specifies a standard for ACL description and transmission from a PDP to a PEP, but its use is not yet widespread. This situation creates added complexity on the PDP to manage the translation of the ACLs into the formats necessary for individual enforcement points. Finally, not all network devices can store the same amount of ACLs in memory. If you attempt to support a large set of role combinations on a dense wiring closet switch, you may exhaust the memory of the switch. You should carefully consider your specific PEPs when designing the scope of your dynamic ACL rollout.

In summary, dynamic ACLs represent an advanced application of the ANA approach but one that scales very well when the steep entrance requirements are met. Organizations new to authenticated networks should focus on a smaller number of high-level roles to get experience before undertaking dynamic ACLs.

9.8 | Coarse-Grained vs. Fine-Grained Authorization

The natural tendency in security is to be as detailed as possible with respect to the rights that a given user should have on the network. After all, why filter just IP subnets when you can describe source and destination port numbers, or even the permissible payloads at the application layer of a packet? The answer is that whereas this level of detail can be useful in very limited cases, such an access-control profile can quickly become unwieldy, hurting overall manageability. The filtering that ANA provides is not meant to be the only layer of security in your network, and treating it as such is a guaranteed way to cause troubleshooting difficulties.

Even if you are willing to address the challenges of setting up such fine-grained authorization, many groups in a typical organization are unable to describe their specific connectivity needs. This situation can result in a constant back and forth of ACL modification until many organizations either create something that is much more coarse-grained or else prohibitively long.

A better approach—certainly to start with, and perhaps over the long term as well—is to focus at the IP subnet level and ignore Layer 4 and above. Your goal for ANA should be that of a traffic cop, controlling who goes where on the road but not stopping each car to look inside.

9.9 | User Directories, Credential Selection, and Routing

This section outlines considerations in credential selection and your user directories. PEAP as an EAP type is common in Microsoft environments. The most common credential supplied for the actual
authentication is Microsoft Challenge Handshake Authentication Protocol version 2 (MSCHAPv2). Certificates are supported as well, but because of the standard limitations and challenges in public key infrastructure (PKI) management, they are far less common. Microsoft Active Directory natively supports MSCHAPv2. If you have a Microsoft client environment but a non-Microsoft LDAP infrastructure, it is more difficult to perform MSCHAPv2 authentication because LDAP directories typically do not store the password hash in the Message Digest Algorithm 4 (MD4) format necessary for MSCHAPv2 to work. Novell E-Directory supports a “Universal Password” feature that provides this capability, but for other LDAP directories some work is necessary to provide the hash in a format that can be used with MSCHAPv2 authentication.

For most organizations, using EAP-TTLS authentication that supports a Password Authentication Protocol (PAP) cleartext password is a better option. Because the PAP lookup is protected by the TLS tunnel, it is not subject to many of the security weaknesses of cleartext passwords. Some modern PDPs offer the ability to perform MSCHAPv2 authentication against any LDAP directory with the proper extension.

You can use smart cards and tokens to increase security; they work well with existing directories provided you have some ability to route the request appropriately within your PDP. Modern PDPs can intelligently route requests to potentially dozens of user directories based on the security requirements of the PEP relaying the request or other factors. Although it is common for network staff to assume an organization has only one user directory, it is far more common among mid- to large-size enterprises to have many distinct directories that must be integrated with.

Part Three: Deployment Phases

10 | ANA Topology and Rollout

This section brings all the aspects of the ANA approach together into a set of topologies that you can deploy to address security goals. Rather than presenting an all-in-one greenfield architecture that no organization can reasonably deploy, this section presents a set of evolving designs that can grow more complex and more capable over time. Each phase builds on top of the previous phases.

The supplied topologies and phasing are meant to be conceptual models, not detailed design diagrams. As such they can easily apply to smaller or larger rollouts.

10.1 | Secure Wireless with Guest Access

For many organizations, the best place to start an ANA rollout is on your wireless network. By design, it is fully 802.1X-capable, and because of the security risks of cleartext transmissions over the air, securing the wireless network with a key sent during the 802.1X handshake is a valuable function. Additionally, by broadcasting a second, open SSID, guests can be easily accommodated with the appropriate guest-management infrastructure on the PDP. Figure 10-1 showcases the secure wireless phase of ANA.

Here you can see a standard two-SSID deployment of a WLAN with one SSID running 802.1X/WPA and another completely open. To authenticate to the 802.1X SSID, the user needs a valid organization credential in the user directory. The PDP brokers the authentication request to the LDAP directory and returns the authentication result to the access point. If policy dictates that only certain groups in the organization are allowed to use the wireless network, enforcement can easily be accomplished by having the PDP base its policy decisions on the user’s group and attribute values returned from the directory.

Users connecting to the open SSID are authenticated via a captive portal web login that can also contain a click-through “terms and conditions” of use agreement. The captive portal can either be a separate device or in some cases be integrated into the WLAN infrastructure itself. The portal authenticates against the PDP, but instead of contacting the user directory, it uses a separate guest repository housed within the PDP. These guest-specific user databases are provisioned typically via simple web interfaces, and they have automatic expiry to ensure that a given guest can connect to the network for only a defined period of time (hours, days, etc.).

The guest portal can also serve as a user-self-service location to aid in 802.1X configuration. Downloadable supplicant installers and configuration tools are available to ensure that any organization user who winds up on the open network (the
limited-access network) understands how to get full access via the 802.1X-enabled SSID.

10.2 | Contractor Access

Contractor access is nothing more than guest access with an option to connect back into the organization’s network to reach specific devices. Contractors can be located offsite and connect via the Internet, or they can be onsite and connect through the guest WLAN network. Figure 10-2 shows contractor access overlaid on the previous secure WLAN rollout.

Access for contractors is provided by an SSL VPN device set up to use ACLs to restrict the contractor’s set of allowed destinations on the internal network. One accommodation to simplicity is made at this phase: Contractors must authenticate through the guest portal before logging into the contractor VPN gateway when connecting onsite at the organization. You can remove this restriction in a couple of ways. One is to configure the portal to allow SSL requests to “contractor.organization.com” to bypass the portal, and the other is to configure the contractor’s MAC address in the portal as a device that does not require portal authentication. You should use the former because it is much more secure. The contractors still need to authenticate at the contractor gateway.

The contractor VPN gateway can easily be the same device as your standard remote-access VPN device, or it can be separate. Provided it is located on a DMZ accessible to the guest network and the Internet at large, it should be relatively easy to set up. The only challenge is to ensure that the gateway supports ACL-based enforcement by user or group. This VPN device can potentially host hundreds of different contractors, each with different rights based on the project they are working on.

When contractor access is deployed, the power and flexibility of ANA should be apparent. With the addition of the intelligent PDP to the network and perhaps a portal or VPN gateway (if not already built into the existing infrastructure), the organization has gone from supporting one role to supporting three roles on the network. No significant topology or routing changes were necessary, and 802.1X is being used only on the WLAN network—where 802.1X support is most mature. SSL VPN provides a clientless secure connection for contractors, and the PDP ensures that contractors can reach only those services they have
10.3 | Privileged-User Role

At this point in the ANA phased rollout, it is appropriate to start securing additional internal resources with the addition of the privileged-user role. As discussed earlier, defining roles for every function in an organization is tedious and does not necessarily net benefits commensurate with the effort required. The privileged-user role simply says that a small subset of your users has access to systems deemed highly sensitive by your security policy. It is possible to have more than one privileged-user role, but for simplicity, our description of this phase shows only one. Depending on the type of organization, “highly sensitive” systems probably include financial systems, HR systems, and perhaps research systems. Because these systems are likely spread around your organization today, do not try to migrate everything all at once. Instead, as your organization requires new servers to support highly sensitive systems, you should deploy these servers behind the data-center access-control device. As for existing servers that support highly sensitive systems, you should relocate each such server only after you have evaluated the repercussions of assigning a new IP address to the server.

In implementing the privileged-user-role phase, we do not yet assume the task of enforcing wired authentication, so organizations at this phase of ANA restrict access to privileged systems to only users who are connected via VPN or WLAN. Wired users can still get full access to all systems. If it is acceptable to block wired users from these systems and mandate that they connect over VPN or WLAN, that configuration can be easily achieved through static wired filters, but for most organizations this configuration is untenable. As such, this phase of ANA is an interim one, and becomes truly useful only if later phases are eventually undertaken. Figure 10-3 shows the integration of the privileged-user role into the ANA rollout. As with previous phases, only the components directly relevant to this phase are shown.

To support the privileged-user role, the VPN infrastructure that already supports contractors and employees is extended to grant privileged employees specific access to the sensitive areas. This support is possible via ACLs on the VPN device itself for the privileged users or through assignment of a specific IP subnet to which the data-center firewall can then provide the elevated access. Because at this phase of ANA ACLs are already on the VPN device to support contractors, setting up a specific ACL for all
privileged users may be a relatively straightforward task. Filtering can occur at the data-center device as well, if desired.

In the WLAN infrastructure, one change is required to support the privileged-user role: Now you must set up the access points to assign users to specific, wired VLANs based on information provided by the PDP. No new SSIDs are needed; the PDP can simply begin to pass the VLAN assignment to the access point. The access point, through a trunk port to the wired switch, can route traffic to any required VLAN.

An interesting byproduct of this phase of ANA is the ability to support contractors and guests whose laptops are 802.1X-capable. Now these short-term users can avoid the captive portal and authenticate directly to the organization’s secure SSID. Their access remains restricted to the Internet (and, optionally, the contractor portal) as dictated by the role assignment of the PDP.

10.4 Basic Wired Authentication

With the WLAN and VPN infrastructure successfully performing RBAC, it is now time to turn our attention to the wired network. Most modern switch infrastructure supports 802.1X, but we assume in this section that your organization has a mix of 802.1X-capable and non-802.1X-capable edge switches. The goal of this phase of ANA is not to add full RBAC capability to the wired network, but simply to require authentication in order to connect to the network. At the end of this phase, guests and contractors will be able to connect via only the WLAN and VPN infrastructures because only these infrastructures will perform role-based assignments. The wired network will remain off limits to guests and contractors because during this phase it will be set to assign all users an all-encompassing employee role. Later phases will add additional roles to the wired network. Figure 10-4 details the wired rollout.

Here you can see a mix of 802.1X-capable switches and endpoints as well as their older equipment. A security gateway provides authentication queries for the older entities. This gateway can also provide user self-service for supplicant configuration if an
802.1X-capable endpoint fails its 802.1X authentication attempt.

In this rollout, the 802.1X-capable devices are configured for 802.1X authentication and MAC authentication, and they are assigned a default VLAN via the guest-VLAN feature on many switches. 802.1X-capable devices will successfully authenticate and be placed on the employee VLAN. Non-802.1X user devices will fail 802.1X and be sent to the gateway. The non-802.1X switch simply treats all users as if they were not 802.1X-capable and routes them to the gateway.

You can configure non-user endpoints (such as printers) via MAC authentication on the 802.1X switches to be assigned to their particular VLAN. You can also statically assign them to a given VLAN on a port-by-port basis. Non-802.1X-capable switches should statically assign non-user endpoints to a VLAN that bypasses the gateway (such as the employee VLAN).

The gateway can be the same device as the guest WLAN portal, provided it has sufficient bandwidth and feature functionality, or it can be a dedicated device. The amount of sophistication this device needs depends heavily on the amount of non-802.1X endpoints an organization has and the degree of security inspection required. Typically these devices can be fairly limited in function because they need only to mimic the security capabilities in the 802.1X-capable edge switches they are deployed with.

10.5 Comprehensive RBAC

Comprehensive RBAC is the culmination of the ANA evolution. At this phase, all forms of network access are authenticated, and all forms of access support all desired roles. Roles are assigned via the PDP and are enforced equally across all access methods. Four roles are supported at this point of the ANA evolution: guest, contractor, employee, and privileged employee. Figure 10-5 shows this design. Please note that some network links are omitted from the diagram to maintain readability.

Because this phase represents the final topological evolution of ANA, we offer more details about the components and considerations of each functional entity on the network. The numbers in the diagram refer to the following corresponding descriptions:
10.5.1 | WLAN Access Point or Controller [1]

- **Features:** Features include 802.1X authentication, dynamic VLAN assignment, MAC authentication (optional), multiple SSID capability, and web authentication (optional).

- **Supported endpoints:** If MAC authentication is deployed, all endpoints are supported. If no MAC authentication is deployed, all but non-user, non-802.1X devices are supported, because these devices cannot authenticate at the portal [2].

- **Deployment role:** The WLAN infrastructure [1] as described previously provides two SSIDs, one for 802.1X-capable systems and another for non-802.1X systems. 802.1X systems (employee, guest, or otherwise) are authenticated at the access point or controller [1] and assigned to the VLAN associated with the user’s network role. Non-802.1X-capable systems associated with the open SSID are routed to the portal [2] or authenticated locally if web authentication is supported on the access point.

10.5.2 | Guest WLAN Portal [2]

- **Features:** Features include captive portal (DNS, DHCP, and routing redirects), web authentication to PDP [9], SSL encryption (optional), per-user ACL enforcement or VLAN, and IP pool assignment from PDP [9] (optional).

- **Supported endpoints:** All user systems are supported, but non-guest and non-contractor systems are typically not allowed to pass. Employees can be provided 802.1X setup instructions and/or routed to the LAN security gateway [7].

- **Deployment role:** The guest WLAN portal [2] authenticates guests, allows contractors to bypass the device to connect to the VPN gateway [3], and provides 802.1X deployment instructions or installers to interested parties. Although it does not need advanced functions such as SSL encryption, per-user ACL enforcement, or VLAN or pool assignment, having those features makes it easier to merge the functionality of the guest portal [2] with the LAN security gateway [7].
10.5.3 | VPN Gateway [3]

- **Features:** Features include SSL VPN, IPsec VPN (optional), user authentication and ACL assignment from PDP [9], dynamic ACLs, and IP pools from PDP [9] (optional).

- **Supported endpoints:** All user systems are supported, but policy typically forbids guests from connecting remotely.

- **Deployment role:** The VPN gateway [3] is charged with providing encrypted and authenticated access to the internal network for authorized users. These users can be connecting locally (as in the case of contractors connecting via wired or wireless) or remotely. Regardless of connection location, role-specific ACLs are triggered on the VPN device by the PDP [9] to enforce the rights of a given user. Dynamic ACLs, although listed as optional, are essential for organizations that support varied contractor roles. For such networks, using dynamic ACLs lets the administrator avoid the onerous configuration of static ACLs on the VPN gateway.

10.5.4 | Perimeter Firewall [4]

- **Features:** Features include stateful filtering, multiple interfaces, routing, Network Address Translation (NAT), user authentication, and ACL assignment via PDP [9] (optional).

- **Supported endpoints:** All endpoints are supported.

- **Deployment role:** Once the mainstay of an organization’s security system, the perimeter firewall in ANA simply performs access control to static servers and defines specific rights allowed for Internet traffic. If your organization wishes to limit access to areas of the Internet to specific user communities, you can use a firewall (or optionally proxy server or cache server) for authentication.

10.5.5 | 802.1X Ethernet Switch [5]

- **Features:** Features include 802.1X authentication, dynamic VLAN assignment from PDP [9], guest VLAN, static ACL support, MAC authentication (optional), and web authentication (optional).

- **Supported endpoints:** All endpoints are supported.

10.5.6 | Older Ethernet Switch [6]

- **Features:** Features include VLANs.

- **Supported endpoints:** All endpoints are supported.

- **Deployment role:** The older Ethernet switch [6] simply forwards traffic to the LAN security gateway [7] or to the campus network as a whole, depending on whether the source of the traffic is a known, non-user device or a user device. Non-user devices must be configured statically, so that they are placed on a VLAN that forwards around the LAN security gateway [7].

10.5.7 | LAN Security Gateway [7]

- **Features:** Features include user authentication and ACL and VLAN assignment via PDP [9], SSL encryption (optional), and captive portal.

- **Supported endpoints:** All user devices are supported.

- **Deployment role:** The LAN security gateway [7] is principally tasked with making up for the inadequacies of the older Ethernet switch [6]. It provides authentication and role assignment via the PDP [9] and routes traffic appropriately based on the permissions supplied. As stated earlier, you can merge it with the WLAN guest portal or deploy it separately.
10.5.8 | Data-center Firewall [8]

- **Features:** Features include access control lists, stateful filtering (optional), integration with LAN switching fabric (optional), VLAN support (optional), SSL encryption, and user authentication or role assignment via PDP [9] (optional).

- **Supported endpoints:** All endpoints are supported.

- **Deployment role:** The data-center firewall [8] is tasked with filtering access to the privileged servers based on the IP subnet of the connection station, the VLAN (not likely in a routed core), or the connecting user (if a second layer of authentication via the PDP [9] is deemed necessary). In the IP subnet case, it simply allows the subnets associated with the privileged VLAN to connect to the servers it protects, and denies all other access. In modern data-center switching infrastructure, you can merge this function with the switching fabric itself through ACLs on the data-center switches.

10.5.9 | Policy Decision Point [9]

- **Features:** Features include RADIUS support, LDAP user lookup support and routing, guest provisioning, local user database, dynamic ACL creation and provisioning (optional), token server support, PEAP and EAP-TTLS support, high availability, VSA support, RADIUS attribute support (filter ID in particular), and syslog and log export.

- **Supported endpoints:** All PEPs [1-8], all directories, all asset repositories, and all token servers are supported.

- **Deployment role:** The PDP [9] is the brains of ANA. It provides all authentication services, all policy determination, and all outbound role provisioning to the PEPs [1-8]. The security and availability of this device is critical, as is its ability to support the VSAs of multiple vendors to ensure heterogeneous interoperability. The PDP [9] intelligently routes authentication requests to the correct directory, and it can also manage the MAC authentication of all the non-802.1X and non-user systems in the ANA deployment. It must be deployed in a high-availability mode to ensure nonstop operation of ANA, and it should be deployed on a high-performance, hardened appliance to ensure security and scalability, because all PEPs [1-8] point traffic at the PDP. The elegance of the PDP approach in ANA is that, when authentication and role assignment are complete, the PDP logs a record of the access event and gets out of the way. It is an out-of-band device integrated with the rest of the ANA fabric via the RADIUS and LDAP protocols. You should deploy a PDP at each major site that requires ANA services to ensure that an outage at one site does not interrupt user and device authentication at other sites.

10.6 | Posture Checking

Adding posture checking capability to ANA is the last phase because, as discussed earlier, it is currently the least useful given the state of standards and endpoint capabilities. Because of the unique challenges posture introduces into ANA, you should test it early in the ANA phased rollout; you should not put it into production until this phase.

Posture requires no further architectural changes to ANA; only feature and function evolutions are needed. One new component is added at this phase, but you can integrate that component with other systems in many cases. Components [2], [3], [7], [9], and the clients themselves are the only systems that require a change to support posture.

First consider the clients. Client systems must support the posture interrogation method your organization chooses to deploy. As discussed in detail in Section 9.5, some variant of NAP or TNC is assumed for ANA given its wide support and heterogeneous deployment option. Vista and Windows XP SP3 clients natively support NAP, and OpenSEA’s XSupplicant provides the necessary TNC capability for other systems.

With regard to the PDP [9], we see that it must support the posture-checking method as well, because it is responsible for validating the data supplied by the client. Alternatively, the PDP [9] can relay the posture data to a separate posture system. Deployment this way imposes a limit on the sophistication of the policy decisions the PDP [9] can make, so such deployments are not recommended.

The VPN gateway [3] needs to support posture as well. This support typically involves a downloadable SSL VPN client on the desktop or some sort of capability within the IPsec client. The TNC/NAP/TNC approach is 802.1X-focused at this point, so VPN posture validation is best done separately in
the VPN device [3]. Alternatively, you can place an inline security gateway or IPS behind the VPN gateway [3], focused on detecting malicious traffic. You can use this gateway or IPS in lieu of posture capabilities embedded in the VPN session. The WLAN guest portal [2] or LAN security gateway [7] also needs this inline malicious traffic detection capability. If neither has the capability, then you must place such a device upstream of [2] and [7]. As discussed earlier, performing posture checks on guest and contractor systems is quite challenging and may not be worth your organization's efforts. Focusing instead on RBAC and traffic inspection provides greater functionality at substantially reduced deployment costs.

10.7 Extended Policies and Additional Roles

For ANA implementations that go beyond the features already discussed, the additional feature choices become too varied to identify in a white paper such as this. Organizations typically will want to investigate policy tuning to better achieve its desired business goals. This investigation might involve evaluating any number of additional user and device attributes to make access decisions. For example, an organization with an ANA-enabled network might choose to restrict access to the privileged-employee role to users who are physically in the building and who have been authenticated via wired 802.1X. Likewise, an organization that enforces posture checking might decide to allow employees with out-of-compliance machines (machines whose posture check failed) to connect to the guest network only. Called role degradation, this capability gives out-of-compliance users an opportunity to address the posture violation issue of their machines before they log a support ticket. Alternatively, an organization might decide to allow all employees to connect to the internal network with basic employee rights, and require posture checks only for those users who wish to access restricted services.

Your policy flexibility is limited only by the sophistication of your PDP [9]. Although you can also pursue additional roles, be aware of the VLAN limitations discussed in Section 9.6. Organizations seeking to go beyond five roles should migrate their infrastructure to one that supports dynamic ACLs (Section 9.7).

10.8 ANA Futures

Organizations that have completed the ANA rollout and are looking to move into new areas should first congratulate themselves on having come so far. Moving from a network where everyone has full access to an ANA-enabled network to one where users have rights consistent with their roles is no easy task. Areas of future investigation for ANA include:

- **Application integration** – Posture and role data can be provided to applications so that applications can be aware of the network context prior to authenticating users.

- **SSO integration** – The 802.1X and VPN login can be merged with application single sign-on (SSO) systems to achieve true system-wide SSO.

- **Identity-based anomaly detection** – Unauthorized use or uncommon usage patterns can be identified by tracking user and endpoint behavior over time. Similar to the way credit card companies identify unusual transactions and then require subsequent authentications, ANA could flag a network-usage profile that is atypical for a given user and subject that user to a one-time secondary authentication challenge to ensure the use is legitimate.

11 Summary

The Authentication Network Architecture (ANA) is the most fundamental reimagining of networking and security since DHCP and perimeter firewalls became common in the mid- to late 1990s. Designed as a dynamic approach to identity and network rights, ANA allows your organization to centralize its policy decisions and distribute policy enforcement across a heterogeneous set of infrastructure elements. Unlike authenticated VPN or dial-up sessions of the past, ANA authenticates all network access at the first point of network connection and authorizes the connecting user or device to one of several roles. Each role has unique network rights. When combined, the set of roles and associated rights represent a role-based access control (RBAC) solution that scales as your organization's needs evolve.

ANA achieves its goals by using standards such as RADIUS, EAP, 802.1X, LDAP, SSL, and IPsec to work with the equipment your organization has today. Rather than being an ideological rearchitecting with its associated six- or seven-digit rollout cost, ANA is built to be flexible enough to fit into even
the oldest IT infrastructures. This document has offered design guidance, best practices, and details about security trade-offs that should enable any organization to begin migrating to the intelligent security offered by ANA. Starting simply with secure wireless and guest access and growing more capable over time, ANA is best implemented in phases. Each phase provides incremental benefit; a wholesale deployment or “forklift upgrade” is not a precondition to achieving useful network security from the ANA framework. ANA is nothing less than the future of network security, and its eventual merger with application identity controls and single sign-on (SSO) frameworks will simply make ANA more capable and manageable in the future.

Appendix I | Legend of Symbols Used

Appendix II | About Identity Engines

Identity Engines delivers scalable, identity-centric solutions for securing heterogeneous enterprise networks. The company’s solutions provide comprehensive identity services such as authentication, authorization, and auditing while enabling centralized administration and policy management for fine-grained, role-based access control and regulatory compliance enforcement. Founded in 2004, the company has received significant industry recognition, including being named an AlwaysOn Top 100 Private Company for 2007, a finalist for the 2007 Red Herring Global 100, and a Gartner “Cool Vendor” for Secure Business Enablement for 2007. SC Magazine awarded the Ignition® solution a 5-star rating. Identity Engines is based in Sunnyvale, California. For more information, visit www.idengines.com or call us at (877) 433-8660.